目标检测xywh格式转xyxy格式

这两天在看YOLOv1的代码,看到这边博客给了代码

传送门:动手学习深度学习pytorch版——从零开始实现YOLOv1

其中有个地方需要用到cv2.rectangle()函数来给图像进行框选

这个函数中的pt1和pt2参数指的就是要框选的图像的左上角点和右下角点,这大家也都知道了

但是当时只有中心宽高(xywh)格式的坐标数据,所以我们需要把它转换成xyxy格式(左上角点和右下角点)的坐标数据

代码先前已经做的工作是,遍历了图片,获取它的xml数据,从而获得的宽高、xyxy格式的变量,然后再通过convert()函数对数据进行归一化

 

def convert(size, bbox):
    """
    将bbox的左上角点、右下角点坐标的格式,转换为bbox中心点 + bbox的w,h的格式,并进行归一化
    size: [weight, height]
    bbox: [Xmin, Ymin, Xmax, Ymax]
    即:xyxy(左上右下) ——> xywh(中心宽高)
    xyxy(左上右下):左上角的xy坐标和右下角的xy坐标
    xywh(中心宽高):边界框中心点的xy坐标和图片的宽度和高度
    """
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (bbox[0] + bbox[2]) / 2.0
    y = (bbox[1] + bbox[3]) / 2.0
    w = bbox[2] - bbox[0]
    h = bbox[3] - bbox[1]
    x = x * dw
    y = y * dh
    w = w * dw
    h = h * dh
    return (x, y, w, h)

 但是后来我只想检验一张图片,所以再根据路径读取xml数据有点麻烦,代码中有两行关于pt1和pt2的计算公式,是怎么来的呢,下面我笨拙地推导一下(目前还没理解到其他好理解的方式能直接写出这个公式,因为我是直接推导了一遍,才看明白这个公式是啥意思)

show_labels_img("2011_000002")


def show_labels_img(imgname):
    """imgname是输入图像的名称,无下标"""
    img = cv2.imread(STATIC_DATASET_PATH + "/JPEGImages/" + imgname + ".jpg")  # 用于读取图片文件
    h, w = img.shape[:2]
    # label = []
    '''
    1) ./是当前目录
    2) ../是父级目录
    3) /是根目录
    '''
    with open(STATIC_DATASET_PATH + "/labels/" + imgname + ".txt", "r") as labels:
        for label in labels:
            label = label.split(" ")
            # label: [类、x、y、w、h(中心宽高)]
            label = [float(x.strip()) for x in label]
            # 根据convert()推导pt1和pt2的公式
            pt1 = (int(label[1] * w - label[3] * w / 2), int(label[2] * h - label[4] * h / 2))  # 矩形的左上角
            print(pt1)
            pt2 = (int(label[1] * w + label[3] * w / 2), int(label[2] * h + label[4] * h / 2))  # 矩形的右下角
            print(pt2)
            #  图像、文字内容、坐标、字体样式、字体大小、颜色、粗细
            cv2.putText(img, GL_CLASSES[int(label[0])], pt1, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
            '''
            pt1: x1, y1(矩形的左上角)
            pt2: x2, y2(矩形的右下角)
            color:B G R
            '''
            cv2.rectangle(img, pt1, pt2, (0, 0, 255), 2)
    cv2.imshow("img", img)
    cv2.waitKey(0)  # 持续显示图片直到有按键被按下,用鼠标选中图片显示窗口,按下键盘任意键即可关闭该窗口()必须要有这一行,否则无法显示图片

推导过程如下:

 

 

版权声明:本文为CSDN博主「shenhaibb_」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/shenhaibb_/article/details/119183498

shenhaibb_

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

YOLOX笔记

目录 1. 样本匹配 正负样本划分过程 2. yoloxwarmcos 学习率 3. 无法开启多gpu训练, 或者多gpu训练卡住? 1. 样本匹配 正负样本划分过程 说明: gt_centerbbox是在gt_bbox中心点向四周

yolox 训练问题记录

如果是训练自己的数据,建议按以下几步检查一下问题: pull最新的代码,我们已经在coco数据集上完整验证过,所以还有问题的话可以排除训练代码的问题;检测你的数据集和标注&#

Yolo标准数据集格式转Voc数据集

Yolo数据集格式 yolo格式详解: 1代表类别,后面小数依次是目标框x中心点坐标归一化处理,y中心点坐标归一化处理,目标框宽和高进行归一化处理(这里的归一化是按照图片的宽高进行计算的&