文章目录[隐藏]
对比基于目标与背景分离的典型方法特点
Methods | Advantages | Disadvantages |
---|---|---|
IPI | Works well with uniform scenes. | Over-shrinks the small targets, leaving residuals inthe target image, time consuming. |
NIPPS | Works well when strong edges and non-target interferences are few. | Difficult to estimate rank of data, fails to eliminate strong edges and non-target interference. |
ReWIPI | Works well when background changes slowly. | Sensitive to rare highlight borders, performance degrading with the increasing of complexity. |
LRR | Works well with simple scenes. | Cannot handle complex backgrounds. |
LRSR | Works well with homogeneous backgrounds. | Difficult to choose two dictionaries simultaneously, leaving noise in target component. |
FBOD +GGTOD | Work well with sky background clutter. | Difficult to choose two dictionaries simultaneously, cannot handle other scenes well. |
SMSL | Works well when the target is salient and the background is clean. | Sensitive to boundaries, poor at background suppression, loses target easily. |
RIPT | Works well when the target is salient. | Does not work well when the targets are close to or on the boundaries, leaving much noise, loses target totally when target is not sufficiently salient. |
Methods | Advantages | Disadvantages |
---|---|---|
IPI | 适用于匀质场景。 | 过度收缩小目标,在目标图像中留下残差,耗时。 |
NIPPS | 当强边缘和非目标干扰很少时,工作良好。 | 难以估计数据的秩,无法消除强边缘和非目标干扰。 |
ReWIPI | 当背景变化缓慢时工作良好。 | 对部分高亮边框敏感,性能随着复杂性的增加而降低。 |
LRR | 适用于简单的场景。 | 无法处理复杂的背景。 |
LRSR | 适用于同质背景。 | 很难同时选择两个字典,在目标中留下噪声。 |
FBOD +GGTOD | 很好地处理天空背景杂波。 | 很难同时选择两本词典,不能很好地处理其他场景。 |
SMSL | 当目标明显,背景干净的时候效果很好。 | 对边界敏感,背景抑制差,易失去目标。 |
RIPT | 当目标很突出时效果很好。 | 当目标在边界附近或边界上时不能很好地工作,留下大量的噪声,当目标不够突出时完全失去目标。 |
在简单的同质场景下,所列出的大多数方法都能取得较好的效果。从表中可以看出,在面对真实复杂场景或非目标干扰源产生的强边缘时,几乎所有方法的性能都很差。为了提高复杂背景下无目标干扰源的检测能力,提出了一种基于非凸秩近似最小化(NRAM)和加权l1范数的检测方法。图1分别为一个典型场景通过IPI、NIPPS、ReWIPI、SMSL、RIPT恢复的目标图像。考虑到目前最先进的方法所面临的共同挑战,即无法完全扫过强边和干扰,如图1所示,目标图像的剩余边缘相对于整个图像具有线性结构稀疏性,因为真实物体的流线型外观和大多数建筑包含垂直边缘[49]。l2,1范数可以识别样本异常值,其中大部分与稀疏结构有关。因此,为了更好地抑制强边,我们引入了额外的正则化项利用l2,1范数的残余强边。
数据集
l2,1 Norm Landan Zhang,
原文: Infrared Small Target Detection via Non-Convex Rank Approximation Minimization Joint l2,1 Norm Landan Zhang, Lingbing Peng, Tianfang Zhang, Siying Cao and Zhenming Peng *
版权声明:本文为CSDN博主「WaterontheMoom」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/yellow_we/article/details/115307029
暂无评论