计算机视觉之目标检测闭关修炼

柠檬树算法

NMS,Non-Maximum Suppression,非极大值抑制

在这里插入图片描述
如上图,定位一个车辆,定位算法找到了这些bBox,则还需要判别出哪些bBox是无效的。非极大值抑制方法:先假设有6个矩形框,根据分类器的类别分类概率作排序,假设按照从小到大排序分别为A、B、C、D、E、F。

  1. 从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;
  2. 假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,F则是我们保留下来的第一个bBox;
  3. 从剩下(已筛选掉B、D、F)的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E,E是我们保留下来的第二个bBox。
  4. 不断重复,直到找出所有被保留下来的矩形框。

以下为具体实验举例:
a) 不使用NMS算法(产生了40个预测框,部分重叠在一起):
在这里插入图片描述
b) 使用NMS算法之后(筛选出5个预测框):
在这里插入图片描述

单线性插值

在这里插入图片描述

双线性插值

首先在 x 方向进行线性插值,得到:
在这里插入图片描述
然后在 y 方向进行线性插值,得到:
在这里插入图片描述
综合起来就是双线性插值最后的结果:
在这里插入图片描述
在这里插入图片描述

BorderDet: Border Feature for Dense Object Detection(ECCV 2020)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

中道崩殂……End

版权声明:本文为CSDN博主「你这个代码我看不懂」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_43349479/article/details/123030964

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

FPN 特征金字塔 理解

Feature Pyramid Networks 对于Faster Rcnn使用FPN,cocoAP提升2.3个点,pascalAP提升3.8个点 1*1的conv,调整通道数,原论文中

非极大值抑制 (Non-Maximum Suppression, NMS)

NMS 基本过程 当前的物体检测算法为了保证召回率,对于同一个真实物体往往会有多于 1 个的候选框输出。由于多余的候选框会影响检测精度,因此需要利用 NMS 过滤掉重叠的候选框,得到最佳的预测输出