文章目录[隐藏]
Object Localization
定位一个物体,要求我们输入一个图片,输出一个物体对应的方位。
X
ConvNet
→
[
P
c
b
x
b
y
b
h
b
w
.
.
.
o
n
e
_
h
o
t
]
X\quad \underrightarrow {\text{ConvNet}} \quad \begin{bmatrix} P_c &\\ b_x &\\ b_y&\\ b_h&\\ b_w&\\ ...&\\ one\_hot&\\ \end{bmatrix}
X
ConvNet⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡Pcbxbybhbw...one_hot⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤
p
c
表
示
是
否
存
在
物
体
,
b
x
,
b
y
,
b
w
,
b
h
,
分
别
表
示
坐
标
和
对
应
的
长
和
宽
。
后
面
是
O
n
e
_
H
o
t
表
示
的
物
体
种
类
。
p_c表示是否存在物体,b_x,b_y,b_w,b_h,分别表示坐标和对应的长和宽。\\后面是One\_Hot表示的物体种类。
pc表示是否存在物体,bx,by,bw,bh,分别表示坐标和对应的长和宽。后面是One_Hot表示的物体种类。
我们定义的loss:
L
o
s
s
(
y
,
y
^
)
=
{
−
∑
i
=
0
n
(
y
i
−
y
i
^
)
2
,
y
p
c
=
1
(
y
p
c
−
y
p
c
^
)
2
,
y
p
c
=
0
ignore anything else
Loss(y,\hat{y}) = \left \{ \begin{aligned} -\sum_{i=0}^{n}(y_i-\hat{y_i})^2& ,\quad y_{p_c}=1\\ (y_{p_c}-\hat{y_{p_c}})^2 &,\quad y_{p_c} = 0 \quad \text{ignore anything else} \end{aligned} \right .
Loss(y,y^)=⎩⎪⎪⎨⎪⎪⎧−i=0∑n(yi−yi^)2(ypc−ypc^)2,ypc=1,ypc=0ignore anything else
当然,不限于均方误差,我们也可以灵活采用其他误差。
Sliding Window Detection(Convolutional implementation)
- 基于前面的CNN知识,我们很容易想到一种滑动窗口的方法,每次从一张图片里面截取一个固定大小的窗口,进行之前的CNN处理,输出
y
^
\hat{y}
- 我们可以知道,图片中每个像素点绝大部分之和它周围几个像素点具有联系,这也是ConvNet用于图像处理的关键。
于是,我们可以将最后几层FC层(全连接)改为Conv层,得到以下的网络。
一个需要注意的点是,我们并不需要人为每次截取窗口,只需要将整张图片输入进去,得到的自然使我们想要的。
- 如下:
YOLO(you only look once)
尽管我们用卷积操作代替了全连接层,但是网络的运行速度仍然不如人意。于是,YOLO应运而生。
YOLO算法将图片分割为
n
∗
n
n*n
n∗n个小格,处理每一个小格,我们标记的时候,标记物体中心所在的小格。这个我们可以做到对图像中每一个像素点只进行一次计算即可,这也就是 You only look once 。
在YOLO中,
b
x
,
b
y
b_x,b_y
bx,by都是小于1的,因为中心点总是会在一个小格内,但是
b
w
,
b
h
b_w,b_h
bw,bh可以大于1,因为一个物体可以横跨多个小格。
Iou (intersection over union)
那么如果判断一个算法给定的box的好坏,我们需要一个评定标准,不然的话,算法就是给定一个很大的box,这样就可以很大可能包含一个物体,这样准确度就会上升,但是实际上我们肯定很少需要这样的算法,我们通常需要一个尽可能精确的box来圈定我们的物体。我们采用下面的标准:
I
o
u
=
O
b
j
e
c
t
s
i
z
e
∩
B
o
x
s
i
z
e
B
o
x
s
i
z
e
∪
O
b
j
e
c
t
s
i
z
e
Iou = \frac{Object \ size\cap Box\ size}{Box\ size \cup Object \ size}
Iou=Box size∪Object sizeObject size∩Box size
I
o
u
=
y
e
l
l
o
w
s
i
z
e
g
r
e
e
n
s
i
z
e
Iou = \frac{yellow\ size}{green\ size}
通常需要I
o
u
≥
0.5
Iou \geq0.5
Anchor Boxes
我们会发现,
y
^
\hat{y}
y^只会输出一个box,如果多个物体的中心都落在同一个小格内,那该如何输出呢?
答案就是再加一个box,
y
^
=
[
p
c
b
x
1
b
y
1
b
w
1
b
h
1
b
x
2
b
y
2
b
w
2
b
h
2
.
.
.
o
n
e
_
h
o
t
]
\hat{y} = \begin{bmatrix} p_c&\\ b_{x1}&\\ b_{y1}&\\ b_{w1}&\\ b_{h1}&\\ b_{x2}&\\ b_{y2}&\\ b_{w2}&\\ b_{h2}&\\ ...\\ one\_hot&\\ \end{bmatrix}
y^=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡pcbx1by1bw1bh1bx2by2bw2bh2...one_hot⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
这个时候
p
c
p_c
pc依然等于1,而不是2。(如果具有两个物体)
如果具有三个及以上物体怎么办,事实上,当我们的分割的时候,尽量分割较小可以避免很多在同一个小格的情况,三个及以上物体出现在同一个小格的情况很少,一般我们不会再添加一个Anchor Box,而是特殊处理一下这种情况。
Non-Max Supression
在目标检测中还容易出现一种问题就是:对于同一个物体,输出了多个对应的box,这也是我们不想要看到的。如何在这几个box选择最好的。
一种称为Non-supression的方法就是:
- 舍弃所有
P
c
P_c
t
h
r
e
s
h
h
o
l
d
threshhold
- 首先选择
P
c
P_c
- 舍弃掉那些和之前box具有较高IOU的box
- 重复操作2一直到没有box达到较高的
P
c
P_c
我们只在相同物体进行Non-supression操作
Semantic Segmentation with U-Net
U-Net Paper
我们想要的输出类似下面一张图片:
相比于之前的CNN,如下:
- 随着层数加深,图像的长和宽都在缩小,并且深度在不断增加,最终输出一个我们想要的向量。
- 但是在Semantic Segmentation中,我们需要的输出应当是一个长宽和输入对应的,深度为1的矩阵,因此如何减小深度,并且扩大长宽,需要一个叫做transpose convolution操作。
Transpose Convolution
简单叙述步骤:
- 计算新参数
z
和
p
′
z和p'
- 输入的每一行和列之间,插入
z
z
- 填充
p
′
p'
- 在步骤3中执行从步骤3生成的图像的标准卷积,步幅长度为1
U-Net
- 前面的操作就是传统的Conv和下采样操作
- 后面就是Conv和transpose 操作
- 其中的skip connnection是直接按照深度叠加(因为长和宽相等)
- 最后进行1*1Conv操作得到
(
h
∗
w
∗
n
c
)
h
,
w
为
原
始
图
片
大
小
,
n
c
为
n
u
m
s
o
f
c
l
a
s
s
e
s
(h*w*nc)h,w为原始图片大小,nc为 nums\ of \ classes
import argparse
import os
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
import scipy.io
import scipy.misc
import numpy as np
import pandas as pd
import PIL
from PIL import ImageFont, ImageDraw, Image
import tensorflow as tf
from tensorflow.python.framework.ops import EagerTensor
from tensorflow.keras.models import load_model
from yad2k.models.keras_yolo import yolo_head
from yad2k.utils.utils import draw_boxes, get_colors_for_classes, scale_boxes, read_classes, read_anchors, preprocess_image
%matplotlib inline
- 舍弃预测概率小于阈值的box
# UNQ_C1 (UNIQUE CELL IDENTIFIER, DO NOT EDIT)
# GRADED FUNCTION: yolo_filter_boxes
def yolo_filter_boxes(boxes, box_confidence, box_class_probs, threshold = .6):
"""Filters YOLO boxes by thresholding on object and class confidence.
Arguments:
boxes -- tensor of shape (19, 19, 5, 4)
box_confidence -- tensor of shape (19, 19, 5, 1)
box_class_probs -- tensor of shape (19, 19, 5, 80)
threshold -- real value, if [ highest class probability score < threshold],
then get rid of the corresponding box
Returns:
scores -- tensor of shape (None,), containing the class probability score for selected boxes
boxes -- tensor of shape (None, 4), containing (b_x, b_y, b_h, b_w) coordinates of selected boxes
classes -- tensor of shape (None,), containing the index of the class detected by the selected boxes
Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold.
For example, the actual output size of scores would be (10,) if there are 10 boxes.
"""
### START CODE HERE
# Step 1: Compute box scores
##(≈ 1 line)
box_scores = box_confidence * box_class_probs
# Step 2: Find the box_classes using the max box_scores, keep track of the corresponding score
##(≈ 2 lines)
box_classes = tf.math.argmax(box_scores,axis=-1)
box_class_scores = tf.math.reduce_max(box_scores,axis=-1)
# Step 3: Create a filtering mask based on "box_class_scores" by using "threshold". The mask should have the
# same dimension as box_class_scores, and be True for the boxes you want to keep (with probability >= threshold)
## (≈ 1 line)
filtering_mask = (box_class_scores>threshold)
# print(filtering_mask)
# Step 4: Apply the mask to box_class_scores, boxes and box_classes
## (≈ 3 lines)
scores = tf.boolean_mask(box_class_scores,filtering_mask)
boxes = tf.boolean_mask(boxes,filtering_mask)
classes = tf.boolean_mask(box_classes,filtering_mask)
### END CODE HERE
return scores, boxes, classes
- 计算IOU
# UNQ_C2 (UNIQUE CELL IDENTIFIER, DO NOT EDIT)
# GRADED FUNCTION: iou
def iou(box1, box2):
"""Implement the intersection over union (IoU) between box1 and box2
Arguments:
box1 -- first box, list object with coordinates (box1_x1, box1_y1, box1_x2, box_1_y2)
box2 -- second box, list object with coordinates (box2_x1, box2_y1, box2_x2, box2_y2)
"""
(box1_x1, box1_y1, box1_x2, box1_y2) = box1
(box2_x1, box2_y1, box2_x2, box2_y2) = box2
### START CODE HERE
# Calculate the (yi1, xi1, yi2, xi2) coordinates of the intersection of box1 and box2. Calculate its Area.
##(≈ 7 lines)
xi1 = max(box1_x1,box2_x1)
yi1 = max(box1_y1,box2_y1)
xi2 = min(box1_x2,box2_x2)
yi2 = min(box1_y2,box2_y2)
inter_width = xi2 - xi1
inter_height = yi2 - yi1
inter_area = max(inter_width,0)*max(inter_height,0)
# Calculate the Union area by using Formula: Union(A,B) = A + B - Inter(A,B)
## (≈ 3 lines)
box1_area = (box1_x2-box1_x1)*(box1_y2-box1_y1)
box2_area = (box2_x2-box2_x1)*(box2_y2-box2_y1)
union_area = (box1_area + box2_area - inter_area)
# compute the IoU
iou = inter_area / (box1_area + box2_area - inter_area)
### END CODE HERE
return iou
- Non-max suppression
# UNQ_C3 (UNIQUE CELL IDENTIFIER, DO NOT EDIT)
# GRADED FUNCTION: yolo_non_max_suppression
def yolo_non_max_suppression(scores, boxes, classes, max_boxes = 10, iou_threshold = 0.5):
"""
Applies Non-max suppression (NMS) to set of boxes
Arguments:
scores -- tensor of shape (None,), output of yolo_filter_boxes()
boxes -- tensor of shape (None, 4), output of yolo_filter_boxes() that have been scaled to the image size (see later)
classes -- tensor of shape (None,), output of yolo_filter_boxes()
max_boxes -- integer, maximum number of predicted boxes you'd like
iou_threshold -- real value, "intersection over union" threshold used for NMS filtering
Returns:
scores -- tensor of shape (, None), predicted score for each box
boxes -- tensor of shape (4, None), predicted box coordinates
classes -- tensor of shape (, None), predicted class for each box
Note: The "None" dimension of the output tensors has obviously to be less than max_boxes. Note also that this
function will transpose the shapes of scores, boxes, classes. This is made for convenience.
"""
max_boxes_tensor = tf.Variable(max_boxes, dtype='int32') # tensor to be used in tf.image.non_max_suppression()
### START CODE HERE
# Use tf.image.non_max_suppression() to get the list of indices corresponding to boxes you keep
##(≈ 1 line)
nms_indices = tf.image.non_max_suppression(boxes,scores,max_boxes_tensor,iou_threshold=iou_threshold)
# Use tf.gather() to select only nms_indices from scores, boxes and classes
##(≈ 3 lines)
scores = tf.gather(scores,nms_indices)
boxes = tf.gather(boxes,nms_indices)
classes = tf.gather(classes,nms_indices)
### END CODE HERE
return scores, boxes, classes
- box的转换
def yolo_boxes_to_corners(box_xy, box_wh):
"""Convert YOLO box predictions to bounding box corners."""
box_mins = box_xy - (box_wh / 2.)
box_maxes = box_xy + (box_wh / 2.)
return tf.keras.backend.concatenate([
box_mins[..., 1:2], # y_min
box_mins[..., 0:1], # x_min
box_maxes[..., 1:2], # y_max
box_maxes[..., 0:1] # x_max
])
- 综合
# UNQ_C4 (UNIQUE CELL IDENTIFIER, DO NOT EDIT)
# GRADED FUNCTION: yolo_eval
def yolo_eval(yolo_outputs, image_shape = (720, 1280), max_boxes=10, score_threshold=.6, iou_threshold=.5):
"""
Converts the output of YOLO encoding (a lot of boxes) to your predicted boxes along with their scores, box coordinates and classes.
Arguments:
yolo_outputs -- output of the encoding model (for image_shape of (608, 608, 3)), contains 4 tensors:
box_xy: tensor of shape (None, 19, 19, 5, 2)
box_wh: tensor of shape (None, 19, 19, 5, 2)
box_confidence: tensor of shape (None, 19, 19, 5, 1)
box_class_probs: tensor of shape (None, 19, 19, 5, 80)
image_shape -- tensor of shape (2,) containing the input shape, in this notebook we use (608., 608.) (has to be float32 dtype)
max_boxes -- integer, maximum number of predicted boxes you'd like
score_threshold -- real value, if [ highest class probability score < threshold], then get rid of the corresponding box
iou_threshold -- real value, "intersection over union" threshold used for NMS filtering
Returns:
scores -- tensor of shape (None, ), predicted score for each box
boxes -- tensor of shape (None, 4), predicted box coordinates
classes -- tensor of shape (None,), predicted class for each box
"""
### START CODE HERE
# Retrieve outputs of the YOLO model (≈1 line)
box_xy, box_wh, box_confidence, box_class_probs = yolo_outputs
# Convert boxes to be ready for filtering functions (convert boxes box_xy and box_wh to corner coordinates)
boxes = yolo_boxes_to_corners(box_xy,box_wh)
# Use one of the functions you've implemented to perform Score-filtering with a threshold of score_threshold (≈1 line)
scores, boxes, classes = yolo_filter_boxes(boxes,box_confidence,box_class_probs,score_threshold)
# Scale boxes back to original image shape.
boxes = scale_boxes(boxes,image_shape)
# Use one of the functions you've implemented to perform Non-max suppression with
# maximum number of boxes set to max_boxes and a threshold of iou_threshold (≈1 line)
scores, boxes, classes = yolo_non_max_suppression(scores,boxes,classes,max_boxes,iou_threshold)
### END CODE HERE
return scores, boxes, classes
yolo_model = load_model("model_data/", compile=False)
def predict(image_file):
"""
Runs the graph to predict boxes for "image_file". Prints and plots the predictions.
Arguments:
image_file -- name of an image stored in the "images" folder.
Returns:
out_scores -- tensor of shape (None, ), scores of the predicted boxes
out_boxes -- tensor of shape (None, 4), coordinates of the predicted boxes
out_classes -- tensor of shape (None, ), class index of the predicted boxes
Note: "None" actually represents the number of predicted boxes, it varies between 0 and max_boxes.
"""
# Preprocess your image
image, image_data = preprocess_image("images/" + image_file, model_image_size = (608, 608))
yolo_model_outputs = yolo_model(image_data)
yolo_outputs = yolo_head(yolo_model_outputs, anchors, len(class_names))
out_scores, out_boxes, out_classes = yolo_eval(yolo_outputs, [image.size[1], image.size[0]], 10, 0.3, 0.5)
# Print predictions info
print('Found {} boxes for {}'.format(len(out_boxes), "images/" + image_file))
# Generate colors for drawing bounding boxes.
colors = get_colors_for_classes(len(class_names))
# Draw bounding boxes on the image file
#draw_boxes2(image, out_scores, out_boxes, out_classes, class_names, colors, image_shape)
draw_boxes(image, out_boxes, out_classes, class_names, out_scores)
# Save the predicted bounding box on the image
image.save(os.path.join("out", image_file), quality=100)
# Display the results in the notebook
output_image = Image.open(os.path.join("out", image_file))
imshow(output_image)
return out_scores, out_boxes, out_classes
Image Segmentation with U-Net
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Conv2DTranspose
from tensorflow.keras.layers import concatenate
from test_utils import summary, comparator
import os
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import imageio
import matplotlib.pyplot as plt
%matplotlib inline
path = ''
image_path = os.path.join(path, './data/CameraRGB/')
mask_path = os.path.join(path, './data/CameraMask/')
image_list = os.listdir(image_path)
mask_list = os.listdir(mask_path)
image_list = [image_path+i for i in image_list]
mask_list = [mask_path+i for i in mask_list]
N = 2
img = imageio.imread(image_list[N])
mask = imageio.imread(mask_list[N])
#mask = np.array([max(mask[i, j]) for i in range(mask.shape[0]) for j in range(mask.shape[1])]).reshape(img.shape[0], img.shape[1])
fig, arr = plt.subplots(1, 2, figsize=(14, 10))
arr[0].imshow(img)
arr[0].set_title('Image')
arr[1].imshow(mask[:, :, 0])
arr[1].set_title('Segmentation')
image_filenames = tf.constant(image_list)
masks_filenames = tf.constant(mask_list)
dataset = tf.data.Dataset.from_tensor_slices((image_filenames, masks_filenames))
- 预处理
def process_path(image_path, mask_path):
img = tf.io.read_file(image_path)
img = tf.image.decode_png(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)
mask = tf.io.read_file(mask_path)
mask = tf.image.decode_png(mask, channels=3)
mask = tf.math.reduce_max(mask, axis=-1, keepdims=True)
return img, mask
def preprocess(image, mask):
input_image = tf.image.resize(image, (96, 128), method='nearest')
input_mask = tf.image.resize(mask, (96, 128), method='nearest')
return input_image, input_mask
image_ds = dataset.map(process_path)
processed_image_ds = image_ds.map(preprocess)
- ConvNet
# UNQ_C1
# GRADED FUNCTION: conv_block
def conv_block(inputs=None, n_filters=32, dropout_prob=0, max_pooling=True):
"""
Convolutional downsampling block
Arguments:
inputs -- Input tensor
n_filters -- Number of filters for the convolutional layers
dropout_prob -- Dropout probability
max_pooling -- Use MaxPooling2D to reduce the spatial dimensions of the output volume
Returns:
next_layer, skip_connection -- Next layer and skip connection outputs
"""
### START CODE HERE
conv = Conv2D(n_filters, # Number of filters
3, # Kernel size
activation='relu',
padding='same',
kernel_initializer='he_normal')(inputs)
conv = Conv2D(n_filters, # Number of filters
3, # Kernel size
activation='relu',
padding='same',
kernel_initializer='he_normal')(conv)
### END CODE HERE
# if dropout_prob > 0 add a dropout layer, with the variable dropout_prob as parameter
if dropout_prob > 0:
### START CODE HERE
conv = Dropout(dropout_prob)(conv)
### END CODE HERE
# if max_pooling is True add a MaxPooling2D with 2x2 pool_size
if max_pooling:
### START CODE HERE
next_layer = MaxPooling2D(pool_size=(2,2))(conv)
### END CODE HERE
else:
next_layer = conv
skip_connection = conv
return next_layer, skip_connection
- Transpose Conv
# UNQ_C2
# GRADED FUNCTION: upsampling_block
def upsampling_block(expansive_input, contractive_input, n_filters=32):
"""
Convolutional upsampling block
Arguments:
expansive_input -- Input tensor from previous layer
contractive_input -- Input tensor from previous skip layer
n_filters -- Number of filters for the convolutional layers
Returns:
conv -- Tensor output
"""
### START CODE HERE
up = Conv2DTranspose(
n_filters, # number of filters
(3,3), # Kernel size
strides=2,
padding='same')(expansive_input)
# Merge the previous output and the contractive_input
merge = concatenate([up, contractive_input], axis=3)
conv = Conv2D(n_filters, # Number of filters
(3,3), # Kernel size
activation='relu',
padding='same',
kernel_initializer='he_normal')(merge)
conv = Conv2D(n_filters, # Number of filters
(3,3), # Kernel size
activation='relu',
padding='same',
kernel_initializer='he_normal')(conv)
### END CODE HERE
return conv
- 综合为U-Net
# UNQ_C3
# GRADED FUNCTION: unet_model
def unet_model(input_size=(96, 128, 3), n_filters=32, n_classes=23):
"""
Unet model
Arguments:
input_size -- Input shape
n_filters -- Number of filters for the convolutional layers
n_classes -- Number of output classes
Returns:
model -- tf.keras.Model
"""
inputs = Input(input_size)
# Contracting Path (encoding)
# Add a conv_block with the inputs of the unet_ model and n_filters
### START CODE HERE
cblock1 = conv_block(inputs, n_filters)
# Chain the first element of the output of each block to be the input of the next conv_block.
# Double the number of filters at each new step
cblock2 = conv_block(cblock1[0], n_filters*2)
cblock3 = conv_block(cblock2[0], n_filters*4)
cblock4 = conv_block(cblock3[0], n_filters*8, dropout_prob=0.3) # Include a dropout_prob of 0.3 for this layer
# Include a dropout_prob of 0.3 for this layer, and avoid the max_pooling layer
cblock5 = conv_block(cblock4[0], n_filters*16, dropout_prob=0.3, max_pooling=False)
### END CODE HERE
# Expanding Path (decoding)
# Add the first upsampling_block.
# Use the cblock5[0] as expansive_input and cblock4[1] as contractive_input and n_filters * 8
### START CODE HERE
ublock6 = upsampling_block(cblock5[0], cblock4[1], n_filters*8)
# Chain the output of the previous block as expansive_input and the corresponding contractive block output.
# Note that you must use the second element of the contractive block i.e before the maxpooling layer.
# At each step, use half the number of filters of the previous block
ublock7 = upsampling_block(ublock6, cblock3[1], n_filters*4)
ublock8 = upsampling_block(ublock7, cblock2[1], n_filters*2)
ublock9 = upsampling_block(ublock8, cblock1[1], n_filters)
### END CODE HERE
conv9 = Conv2D(n_filters,
3,
activation='relu',
padding='same',
kernel_initializer='he_normal')(ublock9)
# Add a Conv2D layer with n_classes filter, kernel size of 1 and a 'same' padding
### START CODE HERE
conv10 = Conv2D(filters=23,kernel_size=(1,1) , padding='same')(conv9)
### END CODE HERE
model = tf.keras.Model(inputs=inputs, outputs=conv10)
return model
unet.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
def display(display_list):
plt.figure(figsize=(15, 15))
title = ['Input Image', 'True Mask', 'Predicted Mask']
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
plt.title(title[i])
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
plt.axis('off')
plt.show()
EPOCHS = 40
VAL_SUBSPLITS = 5
BUFFER_SIZE = 500
BATCH_SIZE = 32
processed_image_ds.batch(BATCH_SIZE)
train_dataset = processed_image_ds.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
print(processed_image_ds.element_spec)
model_history = unet.fit(train_dataset, epochs=EPOCHS)
def show_predictions(dataset=None, num=1):
"""
Displays the first image of each of the num batches
"""
if dataset:
for image, mask in dataset.take(num):
pred_mask = unet.predict(image)
display([image[0], mask[0], create_mask(pred_mask)])
else:
display([sample_image, sample_mask,
create_mask(unet.predict(sample_image[tf.newaxis, ...]))])
版权声明:本文为CSDN博主「东风中的蒟蒻」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_50089378/article/details/122856793
暂无评论