目标检测中的指标都是什么意思

怎样才算检测正确?

IOU大于指定阈值?

类别预测正确?

confidence大于指定阈值?

三者都需要计入我们的考虑范围.

什么是mAP?

TP(True Positive): IoU>0.5的检测框数量(同一Ground Truth只计算一次).

FP(False Positive): IoU<=0.5的检测框(或者是检测到同一个GT的多余检测框的数量).

FN(False Negative): 没有检测到的GT的数量.

Precision: TP / (TP + FP) 模型预测的所有目标中,预测正确的比例.

Recall: TP / (TP + FN) 所有真实目标中,模型预测正确的目标比例.

AP: P-R曲线下面积 P-R曲线: Precision-Recall曲线.

版权声明:本文为CSDN博主「wrysunny_bc」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wrysunny_bc/article/details/122747027

wrysunny_bc

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

FPGA实现实时运动目标检测verilog

本文实现运动目标检测得方法是采用帧间差分法,使用verilog语言实现。 使用得平台是Altera开发板,前端摄像头使用OV7725或者OV7670,显示使用VGA或TFT显示在显示器上。使用FPGA实现帧间差分法得难点在于如何实现帧差,缓存

GiraffeDet:Heavy Neck的目标检测框架

关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 获取论文:关注并回复“GD” 计算机视觉研究院专栏 作者:Edison_G 在传统的目标检测框架中,从图像识别模型继承的主