1. 根据xml文件统计目标种类以及数量
import os
import xml.etree.ElementTree as ET
import numpy as np
# np.set_printoptions(suppress=True, threshold=np.nan)
import matplotlib
from PIL import Image
def parse_obj(xml_path, filename):
tree = ET.parse(xml_path + filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
objects.append(obj_struct)
return objects
def read_image(image_path, filename):
im = Image.open(image_path + filename)
W = im.size[0]
H = im.size[1]
area = W * H
im_info = [W, H, area]
return im_info
if __name__ == '__main__':
xml_path = 'C:/Users/YANG/Music/VOC2007/Annotations/'
filenamess = os.listdir(xml_path)
filenames = []
for name in filenamess:
name = name.replace('.xml', '')
filenames.append(name)
recs = {}
obs_shape = {}
classnames = []
num_objs = {}
obj_avg = {}
for i, name in enumerate(filenames):
recs[name] = parse_obj(xml_path, name + '.xml')
for name in filenames:
for object in recs[name]:
if object['name'] not in num_objs.keys():
num_objs[object['name']] = 1
else:
num_objs[object['name']] += 1
if object['name'] not in classnames:
classnames.append(object['name'])
for name in classnames:
print('{}:{}个'.format(name, num_objs[name]))
print('信息统计算完毕。')
运行结果
2.根据xml文件统计目标的平均长度、宽度、面积以及每一个目标在原图中的占比
# -*- coding:utf-8 -*-
#统计
# 计算每一个目标在原图中的占比
# 计算目标的平均长度、
# 计算平均宽度,
# 计算平均面积、
# 计算目标平均占比
import os
import xml.etree.ElementTree as ET
import numpy as np
#np.set_printoptions(suppress=True, threshold=np.nan) #10,000,000
np.set_printoptions(suppress=True, threshold=10000000) #10,000,000
import matplotlib
from PIL import Image
def parse_obj(xml_path, filename):
tree = ET.parse(xml_path + filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
bbox = obj.find('bndbox')
obj_struct['bbox'] = [int(bbox.find('xmin').text),
int(bbox.find('ymin').text),
int(bbox.find('xmax').text),
int(bbox.find('ymax').text)]
objects.append(obj_struct)
return objects
def read_image(image_path, filename):
im = Image.open(image_path + filename)
W = im.size[0]
H = im.size[1]
area = W * H
im_info = [W, H, area]
return im_info
if __name__ == '__main__':
image_path = 'C:/Users/YANG/Music/VOC2007/JPEGImages/'
xml_path = 'C:/Users/YANG/Music/VOC2007/Annotations/'
filenamess = os.listdir(xml_path)
filenames = []
for name in filenamess:
name = name.replace('.xml', '')
filenames.append(name)
print(filenames)
recs = {}
ims_info = {}
obs_shape = {}
classnames = []
num_objs={}
obj_avg = {}
for i, name in enumerate(filenames):
print('正在处理 {}.xml '.format(name))
recs[name] = parse_obj(xml_path, name + '.xml')
print('正在处理 {}.jpg '.format(name))
ims_info[name] = read_image(image_path, name + '.jpg')
print('所有信息收集完毕。')
print('正在处理信息......')
for name in filenames:
im_w = ims_info[name][0]
im_h = ims_info[name][1]
im_area = ims_info[name][2]
for object in recs[name]:
if object['name'] not in num_objs.keys():
num_objs[object['name']] = 1
else:
num_objs[object['name']] += 1
#num_objs += 1
ob_w = object['bbox'][2] - object['bbox'][0]
ob_h = object['bbox'][3] - object['bbox'][1]
ob_area = ob_w * ob_h
w_rate = ob_w / im_w
h_rate = ob_h / im_h
area_rate = ob_area / im_area
if not object['name'] in obs_shape.keys():
obs_shape[object['name']] = ([[ob_w,
ob_h,
ob_area,
w_rate,
h_rate,
area_rate]])
else:
obs_shape[object['name']].append([ob_w,
ob_h,
ob_area,
w_rate,
h_rate,
area_rate])
if object['name'] not in classnames:
classnames.append(object['name']) # 求平均
for name in classnames:
obj_avg[name] = (np.array(obs_shape[name]).sum(axis=0)) / num_objs[name]
print('{}的情况如下:*******\n'.format(name))
print(' 目标平均W={}'.format(obj_avg[name][0]))
print(' 目标平均H={}'.format(obj_avg[name][1]))
print(' 目标平均area={}'.format(obj_avg[name][2]))
print(' 目标平均与原图的W比例={}'.format(obj_avg[name][3]))
print(' 目标平均与原图的H比例={}'.format(obj_avg[name][4]))
print(' 目标平均原图面积占比={}\n'.format(obj_avg[name][5]))
print('信息统计计算完毕。')
运行结果如下:
boat的情况如下:*******
目标平均W=138.7462311557789
目标平均H=105.48492462311557
目标平均area=22384.846733668342
目标平均与原图的W比例=0.28784839249474414
目标平均与原图的H比例=0.28109636957063827
目标平均原图面积占比=0.1229097790335352
motorbike的情况如下:*******
目标平均W=203.0897435897436
目标平均H=173.74871794871794
目标平均area=46472.610256410255
目标平均与原图的W比例=0.4243023316192677
目标平均与原图的H比例=0.4664647248080359
目标平均原图面积占比=0.2580258915758285
sofa的情况如下:*******
目标平均W=284.4964705882353
目标平均H=192.21411764705883
目标平均area=63344.17411764706
目标平均与原图的W比例=0.5975485795482032
目标平均与原图的H比例=0.514883583915708
目标平均原图面积占比=0.3556410300606695
sheep的情况如下:*******
目标平均W=98.98866855524079
目标平均H=95.05949008498584
目标平均area=17852.827195467424
目标平均与原图的W比例=0.20368722580568308
目标平均与原图的H比例=0.2523693147421427
目标平均原图面积占比=0.09659868069093198
bus的情况如下:*******
目标平均W=210.4375
目标平均H=150.4264705882353
目标平均area=41728.61397058824
目标平均与原图的W比例=0.43593299844318156
目标平均与原图的H比例=0.4061223576740076
目标平均原图面积占比=0.23529310482617666
bottle的情况如下:*******
目标平均W=46.34384858044164
目标平均H=106.68769716088327
目标平均area=8431.548895899054
目标平均与原图的W比例=0.10391077558742272
目标平均与原图的H比例=0.2715329651881007
目标平均原图面积占比=0.0482003828648926
cow的情况如下:*******
目标平均W=136.68258426966293
目标平均H=134.2865168539326
目标平均area=27112.78370786517
目标平均与原图的W比例=0.28553066725597426
目标平均与原图的H比例=0.3664002135560225
目标平均原图面积占比=0.15297752687191007
信息统计计算完毕。
Process finished with exit code 0
3.修改xml文件中某个目标的名字为另一个名字
#修改xml文件中的目标的名字,
import os, sys
import glob
from xml.etree import ElementTree as ET
# 批量读取Annotations下的xml文件
# per=ET.parse(r'C:\Users\rockhuang\Desktop\Annotations\000003.xml')
xml_dir = r'/home/dlut/网络/make_database/数据集——合集/VOCdevkit/VOC2018/Annotations'
xml_list = glob.glob(xml_dir + '/*.xml')
for xml in xml_list:
print(xml)
per = ET.parse(xml)
p = per.findall('/object')
for oneper in p: # 找出person节点
child = oneper.getchildren()[0] # 找出person节点的子节点
if child.text == 'PinNormal': #需要修改的名字
child.text = 'normal bolt' #修改成什么名字
if child.text == 'PinDefect': #需要修改的名字
child.text = 'defect bolt-1' #修改成什么名字
per.write(xml)
print(child.tag, ':', child.text)
版权声明:本文为CSDN博主「Vertira」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Vertira/article/details/121792075
暂无评论