什么是目标检测?有哪些应用?终于有人讲明白了

导读:计算机视觉(Computer Vision,CV)是一门教计算机如何“看”世界的学科。计算机视觉包含多个分支,其中图像分类、目标检测、图像分割、目标跟踪等是计算机视觉领域最重要的研究课题。本文将着重介绍目标检测的相关知识,并提供一些实例,以帮助读者对目标检测建立一个整体的认识。

作者:涂铭 金智勇

来源:大数据DT(ID:hzdashuju)

01 什么是目标检测

本文讨论的目标检测是指通过编写特定的算法代码,让计算机从一张图像中找出若干特定目标的方法。目标检测包含两层含义:

  1. 判定图像上有哪些目标物体,解决目标物体存在性的问题;

  2. 判定图像中目标物体的具体位置,解决目标物体在哪里的问题。

目标检测和图像分类最大的区别在于目标检测需要做更细粒度的判定,不仅要判定是否包含目标物体,还要给出各个目标物体的具体位置。如图1-1所示,目标检测算法关注的是“人体”这一特定目标物体,图像中不但检测出了两个小朋友(人体),还准确地框出了两个小朋友在图像中的位置。

d205606039011f28946557eea8babdcf.png

▲图1-1 人体检测示例

02 典型的应用场景

目标检测是计算机视觉最基本的问题之一,具有极为广泛的应用,下面简单介绍几个典型的应用场景。

1. 人脸识别

人脸识别是基于人的面部特征进行身份识别的一种生物识别技术,通过采集含有人脸的图像或视频流,自动检测和跟踪人脸,进而对检测到的人脸进行识别,通常也叫作人像识别、面部识别。

人脸识别系统主要包括4个部分,分别为人脸图像采集/检测、人脸图像预处理、人脸图像特征提取以及身份匹配与识别。其中人脸图像采集/检测是进行后续识别的基础。如图1-2所示,通过检测框把后续识别算法的处理区域从整个图像限制到人脸区域。

3189a709a5bd7f4a5c65db0f233befd7.png

▲图1-2 人脸识别示例

近年来,人脸识别技术已经取得了长足的发展,目前广泛应用于公安、交通、支付等多个实际场景。

2. 智慧交通

智慧交通是目标检测的一个重要应用领域,主要包括如下场景。

  1. 交通流量监控与红绿灯配时控制:通过视觉算法,对道路卡口相机和电警相机中采集的视频图像进行分析,根据相应路段的车流量,调整红绿灯配时策略,提升交通通行能力。

  2. 异常事件检测:通过视觉算法,检测各种交通异常事件,包括非机动车驶入机动车道、车辆占用应急车道以及监控危险品运输车辆驾驶员的驾驶行为、交通事故实时报警等,第一时间将异常事件上报给交管部门。

  3. 交通违法事件检测和追踪:通过视觉算法,发现套牌车辆、收费站逃费现象,跟踪肇事车辆,对可疑车辆/行人进行全程轨迹追踪,通过视觉技术手段,极大地提升公安/交管部门的监管能力。

  4. 自动驾驶:自动驾驶是当今热门的研究领域,是一个多种前沿技术高度交叉的研究方向,其中视觉相关算法主要包含对道路、车辆以及行人的检测,对交通标志物以及路旁物体的检测识别等。主流的人工智能公司都投入了大量的资源进行自动驾驶方面的研发,目前已经初步实现了受限路况条件下的自动驾驶,但距离实现不受路况、天气等因素影响的自动驾驶(L4级别),尚有相当大的一段距离。

从根本上看,交通场景中各种具体应用的底层实现,都是以目标检测技术为基础的,即对道路、车辆以及行人进行检测。

3. 工业检测

工业检测是计算机视觉的另一个重要应用领域,在各个行业均有极为广泛的应用。在产品的生产过程中,由于原料、制造业工艺、环境等因素的影响,产品有可能产生各种各样的问题。其中相当一部分是所谓的外观缺陷,即人眼可识别的缺陷。

图1-3是电路板内层芯板断路示意图,明显可以看出图中铜导线有一个断开的部分。

0ea8e0bd9c3f517f1778fcdc89b9e08d.png

▲图1-3 电路板内层芯板断路示意图

在传统生产流程中,外观缺陷大多采用人工检测的方式进行识别,不仅消耗人力成本,也无法保障检测效果。工业检测就是利用计算机视觉技术中的目标检测算法,把产品在生产过程中出现的裂纹、形变、部件丢失等外观缺陷检测出来,达到提升产品质量稳定性、提高生产效率的目的。

关于作者:涂铭,资深数据架构师和人工智能技术专家,现就职于腾讯,曾就职于阿里。对大数据、自然语言处理、图像识别、Python、Java等相关技术有深入的研究,积累了丰富的实践经验。

金智勇,计算机视觉算法专家,在计算机视觉领域深耕12年。现就职于百度,曾就职于阿里和三星等知名高新技术企业。业务领域涵盖增强现实、人脸识别、图像美化、智能交通、工业质检等多个方向,具有丰富的算法研究与落地经验。

本文摘编自《深度学习与目标检测:工具、原理与算法》,经出版方授权发布。(ISBN:9787111690344)

0d1aca0bf9c5f9f546298a5eade6d678.png

《深度学习与目标检测:工具、原理与算法》

点击上图了解及购买

转载请联系微信:DoctorData

推荐语:AI和计算机视觉专家在阿里、腾讯、百度经验总结,工具、原理、算法3维度快速入门目标检测,附源数据和代码。

fe99620dbee39d4c75e29c5f1ebef303.gif

划重点👇

干货直达👇

更多精彩👇

在公众号对话框输入以下关键词

查看更多优质内容!

读书 | 书单 | 干货 讲明白 | 神操作 | 手把手

大数据 | 云计算 | 数据库 | Python | 爬虫 | 可视化

AI | 人工智能 | 机器学习 | 深度学习 | NLP

5G | 中台 | 用户画像 数学 | 算法 数字孪生

据统计,99%的大咖都关注了这个公众号

👇

版权声明:本文为CSDN博主「大数据v」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/zw0Pi8G5C1x/article/details/121298615

大数据v

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

Cross Stage Partial Network(CSPNet)

Cross Stage Partial Network(CSPNet) 一. 论文简介 降低计算量,同时保持或提升精度 主要做的贡献如下(可能之前有人已提出): 提出一种思想,特征融合方式(降低计算量的

OTA:目标检测中的最优传输分配

1 引言该论文主要是关于目标检测中的标签分配问题,作者创新性地从全局的角度重新审视了该问题,并提出将标签分配问题看成是一个最优运输问题。要知道最优传输问题是当前最优化理论和GAN理论研究领域中的一个很火的研究课题。论