TX2利用yolov4实时目标检测

工业级别的目标检测关注的不仅仅是精度,还有速度,能达到实时是最理想状态,一般来讲,目标检测实时大于12.5fps被认为是实时,针对TX2利用yolov4检测博主做了一个详细的调研和测试。

1.下载darknet,网址如下:

git clone https://github.com/AlexeyAB/darknet.git

2.配置makefile文件

由于TX2已经刷机Jetpack4.4,TX2里面有gpu,cuda和cudnn等,修改makefile文件如下:

GPU=1
CUDNN=1
OPENCV=1

3.在darknet路径下编译如下

make

4.下载权重,放到darknet目录下

# yolov4-tiny.weights
wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights
# yolov4.weights
wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4.weights


5.测试(yolov4 and yolov4-tiny)

(1).测试图片

./darknet detector test cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights data/dog.jpg 
./darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights data/dog.jpg 

(2).测试视频

./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights data/sample.mp4
./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights data/sample.mp4

 

(3).实时测试板载摄像头 (CSI摄像头实时检测)


./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights "nvarguscamerasrc ! video/x-raw(memory:NVMM), width=1280, height=720, format=NV12, framerate=30/1 ! nvvidconv flip-method=0 ! video/x-raw, width=1280, height=720, format=BGRx ! videoconvert ! video/x-raw, format=BGR ! appsink"


./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights "nvarguscamerasrc ! video/x-raw(memory:NVMM), width=1280, height=720, format=NV12, framerate=30/1 ! nvvidconv flip-method=0 ! video/x-raw, width=1280, height=720, format=BGRx ! videoconvert ! video/x-raw, format=BGR ! appsink"

(4).实时检测usb摄像头

 

./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights  -c 1
./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights  -c 1

(5).rstp实时检测

./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights rstp://admin:admin@20.10.7.34/0
./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights rstp://admin:admin@20.10.7.34/0

 6 总结

评论区留言哦 

下集预告:如何按照自己的需求训练模型以及二次开发

 

 

 

版权声明:本文为CSDN博主「fengfeng,Z」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_38522972/article/details/111876156

fengfeng,Z

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

【学习分享】目标检测中的锚框(Anchor)

锚框
引例
在理解目标检测的锚框之前,我们首先通过一个不太严谨的例子对锚框进行一个简单的了解: 由于目前污染比较严重,导致海洋中漂浮着许多垃圾,这些垃圾既污染环境,又不利