文章目录[隐藏]
之前做的目标检测项目都是用的voc数据集格式,为了和其他算法做比较,也需要在coco数据集上进行测试。本文参考了https://blog.csdn.net/c2250645962/article/details/105408547/
将voc数据集格式转换为coco数据集格式。
1. voc数据集和coco数据集目录结构
├── datasets
│ ├── coco
│ │ ├── annotations
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
│ ├── VOCdevkit
│ │ ├── VOC2007
│ │ ├── VOC2012
coco目录内容如下
annotations目录下内容如下:
首先参考coco数据集目录结构建立文件夹
其中train2017、test2017、val2017文件夹中保存的是用于训练、测试、验证的图片,而annotations文件夹保存的是这些图片对应的标注信息,分别存在instance_train2017、instance_test2017、instance_val2017三个json文件中。
2.转换
json文件中每个字段的含义可以参考:
https://blog.csdn.net/c2250645962/article/details/105367693
上代码,保存成python,放在如图位置,这里是按照0.8,0.1,0.1划分的三个数据集。由xml文件生成。
#coding:utf-8
# pip install lxml
import os
import glob
import json
import shutil
import numpy as np
import xml.etree.ElementTree as ET
START_BOUNDING_BOX_ID = 1
def get(root, name):
return root.findall(name)
def get_and_check(root, name, length):
vars = root.findall(name)
if len(vars) == 0:
raise NotImplementedError('Can not find %s in %s.'%(name, root.tag))
if length > 0 and len(vars) != length:
raise NotImplementedError('The size of %s is supposed to be %d, but is %d.'%(name, length, len(vars)))
if length == 1:
vars = vars[0]
return vars
def convert(xml_list, json_file):
json_dict = {"info":['none'], "license":['none'], "images": [], "annotations": [], "categories": []}
categories = pre_define_categories.copy()
bnd_id = START_BOUNDING_BOX_ID
all_categories = {}
for index, line in enumerate(xml_list):
# print("Processing %s"%(line))
xml_f = line
tree = ET.parse(xml_f)
root = tree.getroot()
filename = os.path.basename(xml_f)[:-4] + ".jpg"
image_id = filename.split('.')[0][-3:]
# print('filename is {}'.format(image_id))
size = get_and_check(root, 'size', 1)
width = int(get_and_check(size, 'width', 1).text)
height = int(get_and_check(size, 'height', 1).text)
image = {'file_name': filename, 'height': height, 'width': width, 'id':image_id}
json_dict['images'].append(image)
## Cruuently we do not support segmentation
# segmented = get_and_check(root, 'segmented', 1).text
# assert segmented == '0'
for obj in get(root, 'object'):
category = get_and_check(obj, 'name', 1).text
if category in all_categories:
all_categories[category] += 1
else:
all_categories[category] = 1
if category not in categories:
if only_care_pre_define_categories:
continue
new_id = len(categories) + 1
print("[warning] category '{}' not in 'pre_define_categories'({}), create new id: {} automatically".format(category, pre_define_categories, new_id))
categories[category] = new_id
category_id = categories[category]
bndbox = get_and_check(obj, 'bndbox', 1)
xmin = int(float(get_and_check(bndbox, 'xmin', 1).text))
ymin = int(float(get_and_check(bndbox, 'ymin', 1).text))
xmax = int(float(get_and_check(bndbox, 'xmax', 1).text))
ymax = int(float(get_and_check(bndbox, 'ymax', 1).text))
assert(xmax > xmin), "xmax <= xmin, {}".format(line)
assert(ymax > ymin), "ymax <= ymin, {}".format(line)
o_width = abs(xmax - xmin)
o_height = abs(ymax - ymin)
ann = {'area': o_width*o_height, 'iscrowd': 0, 'image_id':
image_id, 'bbox':[xmin, ymin, o_width, o_height],
'category_id': category_id, 'id': bnd_id, 'ignore': 0,
'segmentation': []}
json_dict['annotations'].append(ann)
bnd_id = bnd_id + 1
for cate, cid in categories.items():
cat = {'supercategory': 'none', 'id': cid, 'name': cate}
json_dict['categories'].append(cat)
json_fp = open(json_file, 'w')
json_str = json.dumps(json_dict)
json_fp.write(json_str)
json_fp.close()
print("------------create {} done--------------".format(json_file))
print("find {} categories: {} -->>> your pre_define_categories {}: {}".format(len(all_categories), all_categories.keys(), len(pre_define_categories), pre_define_categories.keys()))
print("category: id --> {}".format(categories))
print(categories.keys())
print(categories.values())
if __name__ == '__main__':
# xml标注文件夹
xml_dir = './Annotations'
# 训练数据的josn文件
save_json_train = './train.json'
# 验证数据的josn文件
save_json_val = './val.json'
# 验证数据的test文件
save_json_test = './test.json'
# 类别,如果是多个类别,往classes中添加类别名字即可,比如['dog', 'person', 'cat']
classes = ['dog', 'person', 'cat']
pre_define_categories = {}
for i, cls in enumerate(classes):
pre_define_categories[cls] = i + 1
only_care_pre_define_categories = True
# 训练数据集比例
train_ratio = 0.8
val_ratio = 0.1
print('xml_dir is {}'.format(xml_dir))
xml_list = glob.glob(xml_dir + "/*.xml")
xml_list = np.sort(xml_list)
# print('xml_list is {}'.format(xml_list))
np.random.seed(100)
np.random.shuffle(xml_list)
train_num = int(len(xml_list)*train_ratio)
val_num = int(len(xml_list)*val_ratio)
print('训练样本数目是 {}'.format(train_num))
print('验证样本数目是 {}'.format(val_num))
print('测试样本数目是 {}'.format(len(xml_list) - train_num - val_num))
xml_list_val = xml_list[:val_num]
xml_list_train = xml_list[val_num:train_num+val_num]
xml_list_test = xml_list[train_num+val_num:]
# 对训练数据集对应的xml进行coco转换
convert(xml_list_train, save_json_train)
# 对验证数据集的xml进行coco转换
convert(xml_list_val, save_json_val)
# 对测试数据集的xml进行coco转换
convert(xml_list_test, save_json_test)
版权声明:本文为CSDN博主「倾尽_天下」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_43878078/article/details/120578830
暂无评论