yolov4与yolov5的区别

文章目录[隐藏]

不同点:

1. yolov4采用了较多的数据增强方法(图像增强方法(Data Augmentation)_YMilton的专栏-CSDN博客,博客中方法都使用),而yolov5进行了3中数据增强:缩放、色彩空间调整与Mosaic数据增强。

2. yolov5锚点框是基于训练数据集自动学习的,而yolov4没有自适应锚点框。

3. yolov5采用的激活函数包括leakyReLU和Sigmoid,yolov5的中间隐藏层使用的是leakyReLU激活函数,最后的检测层使用的是Sigmoid激活函数。而yolov4使用的是mish与leakyReLU激活函数,主干网络使用的mish。mish激活函数的复杂度较高。yolov4与yolov5的网络结构图如下博客YOLOv3、YOLOv4、YOLOv5、YOLOx的网络结构图(清晰版)_YMilton的专栏-CSDN博客

(1) leakyReLU

 (2) mish

4. yolov5提供了两个优化函数Adam与SGD,并且都预设了与之匹配的训练超参数,默认使用SGD。而yolov4采用SGD优化函数。

5. yolo系列损失计算包括目标置信度、类别概率与边界框回归损失。yolov5中的边界框损失前期采用的是GIoU Loss,后期使用CIoU Loss,yolov4中采用的是CIoU Loss,与其他方法相比,CIoU带来了更快的收敛和更好的性能。

6. 目标检测在前向推理过程都会采用NMS(非极大值抑制),yolov4在前向推理的过程中使用的方法是DIoU_nms,而yolov5采用加权nms的方式。DIoU_nms的作用如下:

GIoU_nms在检测有遮挡重叠的物体时,效果优于传统的NMS。

7. yolov5在网络输入的第一层增加了Focus结构,yolov4没有这个操作。

8. 训练时间

yolov5的训练时间非常的迅速,速度上远超yolov4。

 相同点:

1. yolov4与yolov5都使用CSPDarknet53作为网络的主干网络(backbone)。CSP全程Cross Stage Partial Networks。

2. PANET被认为是最适合yolo的特征融合网络,yolov4与yolov5都使用PANET作为Neck来聚合特征。

3. yolov4与yolov5的检测头(Head)版本相同,与yolov3的head相同。

版权声明:本文为CSDN博主「MiltonY」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/YMilton/article/details/120053082

MiltonY

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

深度学习_目标检测_“YOLOv5”详解(持续更新)

我最近对很火的元宇宙及其衍生概念进行了思考,虽然现在谈元宇宙落地还为时尚早,但是根据这个愿景反推回来很多的技术趋势和未来的发展方向还是值得关注的。下面是我的公众号原文:【AI行业进展研究与商业价值分析】