Yolo v5 训练自己的数据集

Yolo v5 训练自己的数据集

前言

感谢各位大佬尤其是,博主:深度学习菜鸟,参考原文链接https://blog.csdn.net/qq_36756866/article/details/109111065
本文仅用于记录调试过程,若侵犯了您的隐私请联系作者删除,感谢!!!

一、准备阶段

环境:官方要求Python>=3.8 and PyTorch>=1.6
本文
Pytorch:1.6.0
Cuda:10.0
Python:3.7
源代码下载:https://github.com/ultralytics/yolov5.git
创建虚拟环境,并通过pip install -r requirements.txt安装依赖包。

二、制作数据集

1 建立数据文件夹mydata

在yolov5目录下创建mydata文件夹(名字可以自定义),目录结构如下,将之前labelImg标注好的xml文件和图片放到对应目录下
mydata
…images # 存放图片
…Annotations # 存放图片对应的xml文件
…ImageSets/Main #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)
示例如下:
mydata文件夹下内容如下:
在这里插入图片描述
Annotations文件夹下面为xml文件(标注工具采用labelImage),内容如下:
在这里插入图片描述
images为数据集格式中的JPEGImages,内容如下:
在这里插入图片描述
ImageSets文件夹下面有个Main子文件夹,其下面存放训练集、验证集、测试集的划分,通过脚本生成,可以创建一个split_train_val.py文件,代码内容如下:

#----------------------------------------------------------------------#
#   验证集的划分在train.py代码里面进行
#   test.txt和val.txt里面没有内容是正常的。训练不会使用到。
#----------------------------------------------------------------------#
'''
#--------------------------------注意----------------------------------#
如果在pycharm中运行时提示:
FileNotFoundError: [WinError 3] 系统找不到指定的路径。: './VOCdevkit/VOC2007/Annotations'
这是pycharm运行目录的问题,最简单的方法是将该文件复制到根目录后运行。
可以查询一下相对目录和根目录的概念。在VSCODE中没有这个问题。
#--------------------------------注意----------------------------------#
'''
import os
import random 
random.seed(0)

# xmlfilepath=r'./VOCdevkit/VOC2007/Annotations'
xmlfilepath=r'./Annotations'
saveBasePath=r"./ImageSets/Main/"
 
#----------------------------------------------------------------------#
#   想要增加测试集修改trainval_percent
#   train_percent不需要修改
#----------------------------------------------------------------------#
trainval_percent=1
train_percent=0.9

temp_xml = os.listdir(xmlfilepath)
total_xml = []
for xml in temp_xml:
    if xml.endswith(".xml"):
        total_xml.append(xml)

num=len(total_xml)  
list=range(num)  
tv=int(num*trainval_percent)  
tr=int(tv*train_percent)  
trainval= random.sample(list,tv)  
train=random.sample(trainval,tr)  
 
print("train and val size",tv)
print("traub suze",tr)
ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w')  
ftest = open(os.path.join(saveBasePath,'test.txt'), 'w')  
ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w')  
fval = open(os.path.join(saveBasePath,'val.txt'), 'w')  
 
for i  in list:  
    name=total_xml[i][:-4]+'\n'  
    if i in trainval:  
        ftrainval.write(name)  
        if i in train:  
            ftrain.write(name)  
        else:  
            fval.write(name)  
    else:  
        ftest.write(name)  
  
ftrainval.close()  
ftrain.close()  
fval.close()  
ftest .close()


运行代码后,在Main文件夹下生成下面四个txt文档:
在这里插入图片描述

2 准备label

在yolov5目录下创建voc_label.py文件,将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中,代码内容如下:

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ["cup","can","sprinkling","bottle"]  # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)

def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h

def convert_annotation(image_id):
    in_file = open('mydata/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('mydata/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        # difficult = obj.find('difficult').text
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()
for image_set in sets:
    if not os.path.exists('mydata/labels/'):
        os.makedirs('mydata/labels/')
    image_ids = open('mydata/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('mydata/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/mydata/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

上述代码可以把数据集格式转换成yolo_txt格式,即将每个xml标注提取bbox信息为txt格式(这种数据集格式成为yolo_txt格式),每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。格式如下:
在这里插入图片描述
参考(https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#2-create-labels)
代码运行后会生成如下labels文件夹和三个包含数据集的txt文件,其中labels中为不同图像的标注文件,train.txt等txt文件为划分后图像所在位置的绝对路径,如train.txt就含有所有训练集图像的绝对路径。
在这里插入图片描述
三个txt文件里面的内容如下:
在这里插入图片描述

注意:运行voc_label.py时报错“ZeroDivisionError: float division by zero”的原因是:标注文件中存在width为0或者height为0的数据,检查修改后可解决。

3 配置文件

3.1 数据集的配置

在yolov5目录下的data文件夹下新建一个mydata.yaml文件(可以自定义命名),用来存放训练集和验证集的划分文件(train.txt和val.txt),这两个文件是通过运行voc_label.py代码生成的,然后是目标的类别数目和具体类别列表,mydata.yaml内容如下:
在这里插入图片描述

注意:mydata.yaml文件中train和val通过train.txt和val.txt指定,若在训练时报错,则检查冒号后面是否有空格,若没有会被认为是字符串而不是字典,引发报错。

3.2 编辑模型配置文件

在yolov5/model文件夹下是模型的配置文件,提供s、m、l、x版本,随着架构的增大,训练时间也是逐渐增大,假设采用yolov5s.yaml,只用修改一个参数,把nc改成自己的类别数:
在这里插入图片描述
至此,自定义数据集已创建完毕,接下来就是训练模型了。

4 模型训练

4.1 模型训练

运行train.py之前需要修改几个参数,如下:
在这里插入图片描述

以上参数解释如下:
epochs:指的就是训练过程中整个数据集将被迭代多少次,显卡不行你就调小点。
batch-size:一次看完多少张图片才进行权重更新,梯度下降的mini-batch,显卡不行你就调小点。
cfg:存储模型结构的配置文件
data:存储训练、测试数据的文件
img-size:输入图片宽高,显卡不行你就调小点。
rect:进行矩形训练
resume:恢复最近保存的模型开始训练
nosave:仅保存最终checkpoint
notest:仅测试最后的epoch
evolve:进化超参数
bucket:gsutil bucket
cache-images:缓存图像以加快训练速度
weights:权重文件路径
name: 重命名results.txt to results_name.txt
device:cuda device, i.e. 0 or 0,1,2,3 or cpu
adam:使用adam优化
multi-scale:多尺度训练,img-size +/- 50%
single-cls:单类别的训练集

4.2训练过程可视化

利用tensorboard可视化训练过程,训练开始会在yolov5目录生成一个runs文件夹,利用tensorboard打开即可查看训练日志,命令如下:

tensorboard --logdir=runs

5 遇到的问题

1、 detect文件报错有关SPPF
修改方法:在models中的common中加上下面的代码

class SPPF(nn.Module):  # export-friendly version of nn.SiLU()
    @staticmethod
    def forward(x):
        return x * torch.sigmoid(x)

2、训练时出现找不到标签文件
修改方法:首先检查mydata文件夹写的名称是否按照要求建立,按要求建立依旧报错:则将标签文件与图像文件一起放在Images中。

版权声明:本文为CSDN博主「张十三、」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42608740/article/details/121288334

张十三、

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

Day 14 - 安装与执行 YOLO

Day 14 - 安装与执行 YOLO 在 介绍影像辨识的处理流程 - Day 10 有提到 YOLO 模型是由 Joseph Redmon 所提出,而到了 YOLOV4 后才换成另外一群人继续发展,

目标检测自动标注生成xml文件

前言 在训练目标检测时,标注数据是一项简单而又浪费时间的事情,如果能够自动标注数据将可以高效的扩充数据集,从而提高训练模型的效果。 目前能想到的一种自动标注方法是先训练一个检测效果较好的模型&#xff

目标检测入门之矩形框IOU计算

1. 引言 在目标检测领域中,我们经常用IOU来衡量检测框和标注真实框之间的重叠程度,那么究竟该如何计算IOU呢? 闲话少说,我们直接进入今天的主题… 2. 什么是IOU? IOU(交并比 Intersection over

yolov5 检测一类物体

使用yolov5官方框架检测一类物体 yolov5的官方框架可较好的对共80种类进行目标检测,本文介绍一种直接修改源代码来只检测一类物体的方法以及通用的方法(利用数据集训练自己的权重)。 一、直接修