自动驾驶系统进阶与项目实战(十)基于PointPillars的点云三维目标检测和TensorRT实战(1)
发表于CVPR2019的PointPillars是目前比较受业内认可的激光雷达三维检测算法,其推理速度和性能俱佳,百度Apollo和Autoware两个开源自动驾驶项目的感知系统均包含了基于PointPillars目标检测模块。本文首先从理论层面解析PointPillars方法,接着使用PyTorch和Kitti数据集从零开始训练一个神经网络,我们将使用kitti的测试数据推理并可视化检测结果。在下一篇文章中,我们将模型导出为ONNX,并且进一步导出为TensorRT的engine模型,最后在C++项目中推理TensorRT模型。完成本文,你将能复现以下结果:
PointPillars方法的特点
和2D图像的深度学习目标检测很不相同,点云数据具有两个显著特征:(1)相对2D图像来说,点云数据非常稀疏;(2)点云数据是三维的。为了将图像领域卷积神经网络做模式识别的经验引入三维点云中,一些深度学习方法采用了三维卷积方法或者是将点云投
版权声明:本文为CSDN博主「AdamShan」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/AdamShan/article/details/118880514
暂无评论