机器视觉(machine vision)或者计算机视觉(computer vision)是用机器人代替人眼进行测量和判断,是模式识别研究的一个重要方面。计算机视觉通常分为低层视觉与高层视觉两类,低层视觉主要执行预处理功能,如边缘检测、移动目标检测、纹理分析,以及立体造型、曲面色彩等,主要目的是使得看见的对象更突出。这时还不是理解阶段。高层视觉主要是理解对象,需要掌握与对象相关的知识。
机器视觉的前沿课题包括:实时图像的并行处理,实时图像的压缩、传输与复原,三维景物的建模识别,动态和时变视觉等。
机器视觉系统是指通过图像摄取装置将被摄取的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和宽度、颜色等佶息,转换成数字信号,图像系统对这些信号进行各种运算,抽取目标的特征,进而根据判别的结果来控制现场的设备动作。机器视觉的主要研目标是使计算机具有通过二维图像认知三维坏境信息的能力,能够感知与处理三维环境中物体的形状、位置、姿态、运动等几何信息。
机器视觉与模式识別存在很大程度的交叉性,两者的主要区别是机器视觉更注重三维视觉信息的处理,而模式识别仅仅关心模式的类别。此外模式识别还包括听觉等非视觉信息。
在国外,机器视觉的应用相当普及,主要集中在电子、汽车、冶金、食品饮料、零配件装配及制造等行业。机器视觉系统在质量检测的各个方间已经得到广泛的应用。在机器视觉产品刚刚起步,目前主要集中在制药、印刷、包装、食品饮料等行业,但随着国内制造业的快速发展,对于产品检测和质最的要求不断提高,各行各业对图像和机器视觉技术的工业自动需求将越来越大,因此机器视觉在未来制造业中将会有很大的发展空间。
聚焦多智时代,引领智能变革,多智时代为人工智能科谱呐喊!
版权声明:本文为CSDN博主「duozhishidai」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/duozhishidai/article/details/79252930
暂无评论